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44-1 INTRODUCTION

Modern agriculture uses substantial quantities of fertilizers, pesticides,
and other chemicals that are beneficial only in the upper part of the soil
profile. Translocation of these chemicals to the subsoil makes them not
only unavailable for plant uptake, but also poses a threat to the quality
of underlying groundwater systems. Chemicals dumped in waste disposal
sites are also subject to translocation to groundwater, drains, or even
surface streams. The same is true for radioactive materials and other
chemicals spilled from waste storage reservoirs.

Various theoretical models have been developed over the vears to
describe chemical transport in soils. Success of these models depends to
a large degree on our ability to quantify the transport parameters that
enter into these models. Important parameters are the fluid flux, the
dispersion coefficient, and the adsorption or exchange coeflicients in case
of interactions between the chemical and the solid phase. Simple linear
adsorption or exchange can be accounted for by introducing a retardation
factor in the transport equation. Various zero- or first-order production
or decay coefficients may be required also (for example, when predicting
transport of certain organic compounds, N species, or radionuclides).

A large number of methods are available for determining the dis-
persion coefficient and the retardation factor from observed solute con-
centration distributions. This chapter describes five different techniques
that are applicable to both laboratory and field displacement experiments.
A few other methods exist that, in addition to those discussed here, can
also be used to obtain estimates for the dispersion coefficient and the
retardation factor. They include the method of moments (Aris, 1958;
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Agneessens et al., 1978; Skopp, 1985: Valocchi, 1985; Jury & Sposito,
1985; among others), and methods to determine the two coefficients from
the location and peak concentration of a short or instantaneous surface-
applied tracer pulse (Kirkham & Powers, 1972; Saxena et al,, 1974; Yu
et al., 1984). The reader is referred to the original studies for a discussion
of these additional methods.

44-2 THEORETICAL PRINCIPLES

All available methods for determining the required transport param-
eters from observed concentration distributions are based on analytical
solutions of the solute transport equation. Consequently, we will first give
a brief discussion of the transport equation and of various boundary
conditions that have been used to derive analytical solutions of that
equation.

44-2.1 Transport Equation

Consider the situation where water containing a dissolved tracer is
applied to a tracer-free soil profile. As more of the solution is added, the
initially very sharp tracer front near the soil surface becomes more and
more spread out (dispersed) due to the combined effects of diffusion and
convection. Transport of the dissolved tracer consists of three compo-
nents:

Convective or Mass Transport (J,,). Convective (or advective) trans-
port refers to the passive movement of the dissolved tracer with flowing
soil water. In the absence of diffusion, water and the dissolved tracer
move at the same average rate

Jn=14qC (1]

where ¢ is the volumetric fluid flux density and C is the volume-averaged
solute concentration.

Diffusive Transport (Jp). Diffusion is a spontaneous process that re-
sults from the natural thermal motion of dissolved ions and molecules.
Diffusive transport in soils tends to decrease existing concentration gra-
dients, and in analogy to Fick’s law, can be described by

_ _gp OC
Jp= =D, 9 2]

where 6 is the volumetric water content, D,, is the porous medium ionic
or molecular diffusion coefficient, and x is distance. Because of a tortuous
flow path, D,, in soils is somewhat less than the diffusion coefficient in
pure water (D,):

D, = D, (3]
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where 7 is a dimensionless tortuosity factor, ranging roughly from 0.3 to
about 0.7 for most soils.

Dispersive Transport (J,,). Dispersive transport results from the fact
that local fluid velocities inside individual pores and between pores of
different shapes, sizes, and directions, deviate from the average pore-
water velocity. Such velocity variations cause the solute to be transported
down-gradient at different rates, thus leading to a mixing process that is
macroscopically similar to mixing caused by molecular diffusion. Dis-
persion is a passive process that, unlike diffusion, occurs only during
water movement. On the other hand, diffusion always forms an integral
part of the overall dispersion process by reducing flow-induced concen-
tration gradients within and between pores. Because of the passive nature
of the dispersion process, the term mechanical dispersion is often used
to describe mixing caused by local velocity variations (Fried & Com-
barnous, 1971; Bear, 1972; Freeze & Cherry, 1979). Laboratory and field
experiments have shown that dispersive transport can be described by
an equation similar to Eq. {2] for diffusion

J, = —40D, FrS (4]

where D, is the mechanical dispersion coefficient (Bear, 1972). This coef-
ficient is generally assumed to be a function of the fluid velocity

D, = NV (5]

where \ is the dispersivity and v the average interstitial or pore-water
velocity, approximated by the ratio ¢/f. The exponent » in Eq. [53] is an
empirical constant, roughly equal to 1.0. For most laboratory displace-
ment experiments involving disturbed (repacked) soils and for certain
uniform field soils, A is on the order of about 1 cm or less (assuming that
n = 1). For transport problems involving undisturbed field soils, espe-
cially when aggregated, X is usually about one or two orders of magnitude
larger.

Because of the macroscopic similarity between molecular diffusion
and mechanical dispersion, the coefficients D,, and D, are often consid-
ered additive

D =D, + D, (6]

where D is the longitudinal hydrodynamic dispersion coefficient (Bear,
1972), further referred to simply as the dispersion coefficient. Other terms
frequently used for D are the apparent diffusion coefficient (Nielsen et al.,
1972; Boast, 1973). and the diffusion-dispersion coefficient (Hillel, 1980),
while the term hydrodynamic dispersion coefficient sometimes has been
reserved for D, only (Shamir & Harleman, 1966; Nielsen et al., 1972;
Boast, 1973).
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Combining Eq. [1], [2], [4], and [6] leads to the following expression
for the solute flux, J

9C
Jo= =D —+qC. [7]

Substituting Eq. [7] into the equation of continuity

9 9J,
5;(9C+p5)=—ax [8]

yields the transport equation

3 = 0 (pp9C _
m(()C—kpS)-—ax(HDax qC) [9]

where S is the adsorbed concentration (mass of solute per unit mass of
soil), p 1s the soil bulk density, and ¢ is time. The two terms on the left
side of Eq. {9] account for changes in solute concentrations associated
with the liquid and solid phases, respectively.

We assume here that .S and C can be related by a linear or linearized
equilibrium isotherm of the form

S = kC [10]

where & is an empirical distribution coeficient. The assumption of linear
adsorption generally is valid only at low concentrations. Note that Eq.
[9] assumes that the chemical is not subject to any production or decay
processes. A few comments about the determination of zero- and first-
order production or decay coefficients from observed displacement ex-
periments are given in section 44-9.

If, in addition to linearized equilibrium adsorption, steady water flow
in a homogeneous soil profile is assumed (# and g are constant in time
and space), Eq. [9] reduces to

2

where R is the retardation factor
R =1+ pk/t. [12]

If there are no interactions between the chemical and the soil, k£ becomes
zero and R reduces to one. In some cases R may become less than one,
indicating that only a fraction of the liquid phase participates in the
transport process. This may be the case when the chemical is subject to
anion exclusion or when relatively immobile liquid regions are present,
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for example inside dense aggregates, that do not contribute to convective
transport. In case of anion exclusion, (1 —R) may be viewed as the relative
anion exclusion volume.

44-2.2 Boundary Conditions and Analytical Solutions

To complete the mathematical description of transport through semi-
infinite field profiles (0 < x < o) or finite laboratory columns of length
L (0 < x < L), Eq. [11] must be augmented with auxiliary conditions
describing the initial concentration of the system and the boundary con-
ditions. Proper formulation of the boundary conditions is important when
analyzing laboratory displacement experiments involving relatively short
columns, as well as for interpreting tracer data from laboratory or field
profiles exhibiting large dispersivities A. Also, incorrect use of boundary
conditions for laboratory tracer experiments can lead to serious errors
when the experimental results subsequently are extrapolated to field sit-
uations.

Table 44-1 summarizes four available analytical solutions of Eq.[11]
for both semi-infinite (A-1, A-2) and finite systems (A-3, A-4). The an-
alytical expressions hold for the relative concentration ¢, which is defined
as :

cxt) = [Clxn) — CINC, — C) [13]

where C, 1s the concentration of the applied solution and C, the initial
concentration. Both C, and C, are assumed to be constant.

When a tracer solution is applied at a specified rate from a perfectly
mixed inlet reservoir to the surface of a finite or semi-infinite soil profile,
continuity of the solute flux across the inlet boundary leads directly to a
third-type or flux-type boundary condition of the form

( —-D Lie +¢C )

ox = oG,

0
x=0+

[14]

where 0+ indicates evaluation at the inlet boundary just inside the me-
dium.

For semi-infinite systems in the field we also need a boundary con-
dition that specifies the behavior of C(x,7) when x — oo. For our dis-
cussion it is sufficient to require that

€ (.0 =0, [15]

The analytical solution for boundary conditions [14] and [15] 1s given
by case A-2 in Table 44-1. This solution correctly evaluates volume-
averaged, in situ or resident concentrations in semi-infinite field profiles.
For example, one may verify that solution A-2 satisfies the mass balance
requirement
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oGyt = Rfow[C(x,t) ~ Cldx. [16]

In other words, whatever material is added at the surface (term on the
left) should be present in the soil profile (term on the right).

Instead of Eq. [14], a first- or concentration-type input boundary
condition has also been used

co,n) = C,. [17]

This equation assumes that the concentration itself can be specified at
the inlet boundary, a situation that usually is not possible in practice.
Analytical solution A-1 for this condition (see Table 44-1) fails to satisfy
mass balance Eq. [16], the largest errors occurring at relatively small
values of the dimensionless group vt/DR (van Genuchten & Parker,
1984). Hence, this solution should not be used for evaluating volume-
averaged concentrations in semi-infinite field profiles. On the other hand,
solution A-1 is useful for estimating solute fluxes at any point in the
profile. As shown by Brigham (1974), Kreft and Zuber (1978), and Parker
and van Genuchten (1984a), among others, solutions A-1 and A-2 are
related through the transformation

D 3C
v dx

G=C-— [18]
where C; to be identified with analytical solution A-1, represents flux-
averaged or flowing concentrations, in contrast to C (solution A-2), which
represents volume-averaged or resident concentrations. In other words,
the solute flux J; (Eq. [7]) at any point in the profile is directly specified
by J; = gC,with C,given by solution A-1.

Proper formulation of the exit boundary condition for displacement
through finite laboratory columns is considerably more difficult than for
semi-infinite field profiles. In analogy with Eq. [14], mass conservation
requires the solute velocity to be continuous across the exit boundary

aC

(—D—+uc)

o = ¢C, [19]

x=L-

where L— indicates evaluation just inside the column, and where C, is
the effluent concentration. This equation assumes negligible dispersion
in the exit reservoir (or after-section). Because of an extra unknown (C,),
Eq. [19] leads to an indeterminate system of equations; hence, an addi-
tional relation is needed to fully describe the system. One such equation
is based on the intuitive assumption that the concentration should be
continuous at x = L:

CL—, 1) = CL). [20]
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Substitution of this equation into Eq. [19] leads to the frequently used
boundary condition (Danckwerts, 1953)

%(L,t)=0. [21]

The analytical solution for boundary conditions [14] and [21], derived
by Brenner (1962), is given by case A-4 in Table 44-1. Brenner’s solution
describes volume-averaged concentrations inside the column. Because of
the zero concentration gradient at x = L, this solution also defines a flux
concentration (Eq. [18]) at the lower boundary. Hence, Brenner’s solution
correctly interprets effluent concentrations as representing flux-averaged
concentrations. Table 44-2 (case A-4) shows the resulting expression for
the relative effluent concentration in terms of the number of pore vol-
umes, 7, leached through the column and the column Peclet number, P

T = vt/L [22a]

P = vL/D. [22b]

Computational programs for evaluation of Brenner’s series solution are
readily available (van Genuchten & Alves, 1982). The series solution
converges only for relatively small values of P. For large P-values, com-
putationally efficient and very accurate approximate solutions have also
been obtained (van Genuchten & Alves, 1982).

Analogous to Eq. [16] for semi-infinite systems, the mass balance
requirement for finite columns is

cfo [C,— C.(r)]dr= Rfo [C(x,1) = C]ax. [23]

This equation states that whatever is added to the column minus what-
ever 1s leaving that column (left side) must be stored in the column (right
side). Upon substitution, it is easily demonstrated that solution A-4 sat-
isfies Eq. [23]. Tables 44-1 and 44-2 also list analytical solution A-3 for
boundary conditions [17] and [21]. Contrary to A-1 and A-2, solutions
A-3 and A-4 are not related through the transformation given by Eq. [18].
Moreover, solution A-3 fails the mass-balance requirement (Eq. [23]),
and as will be shown later, also violates a mass balance for the effluent
curve. Hence, this solution should never be applied to displacement ex-
periments.

The analysis above shows that Brenner’s solution A-4 is based on
the assumption that the concentration is continuous at x = L. An al-
ternative formulation is possible by assuming that solute distributions
inside the column are not affected by an outflow boundary or effluent
collection system, thus considering the column to be part of an effectively
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semi-infinite system. This in turn suggests that analytical solution A-2 of
Table 44-1 adequately describes volume-averaged concentrations inside
the column. Substituting this solution into Eq. [19] leads then to a dif-
ferent expression for the relative effluent concentration

1 RL — vt 1 oL RL + vt _
(1) = 5 erfc[ W J + > exp( ) )erfc[ ——\‘Z(DRI)I/z } [24]

which is the same as solution A-1 of Table 44-1, evaluated at x = L.
This result is consistent with the notion that effluent concentrations are
flux-averaged concentrations (Van Genuchten & Parker, 1984; Parker &
Van Genuchten, 1984a). Hence, solution A-1 of Table 44-2 correctly
predicts effluent curves from finite columns, given the assumption that
the exit boundary does not affect transport inside the column.

To appreciate the effects of various boundary conditions, Fig. 44-1
shows, for three different values of P, calculated effluent curves based on
the four analytical solutions listed in Table 44-2. Note that the solutions
deviate drastically when P = 1, but slowly converge when P increases.
Solutions A-1 and A-4 are similar when P = 5 and essentially identical
when P = 20.

An important attribute of a breakthrough curve from a finite column
is the area above each curve. This area, sometimes referred to as the
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Fig. 44-1. Relative effluent concentration profiles for analytical solutions A-1 (Lapidus &
Amundson, 1952), A-2 (Lindstrom et al,, 1967), A-3 (Cleary & Adrian, 1673) and A-4
(Brenner, 1962). The effluent curves are plotted for three values of the column Peclet
number, P,
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holdup (H), represents the amount of material that can be stored in the
column. Mathematically, H is given by

H=f0w[l—ce(T)}dT. [25]

Orne may verify that # = R for solutions A-1 and A-4. For solution A-
2, H is given by (van Genuchten & Parker, 1984)

H = R[1 + (1/P)] [26]

while for solution A-3
H = R[l — (1/P)y+ (e77/P)]. [27]
Figure 44-2 gives a plot of the relative holdup (H/R) vs. P for the four
analytical solutions. Note that H/R deviates substantially from unity for
solutions A-2 and A-3. Hence, highly inaccurate estimates for R can be

obtained when these two solutions are fitted to column effluent data,
especially when P is small. For example, solution A-2 overestimates R

- by about 50% when P = 2.

In conclusion, only solutions A-1 and A-4 for the effluent curve lead
to correct estimates for R, irrespective of the value of P. However, these
two solutions may yield slightly different estimates for P, especially when
P is less than about 5 (Fig. 44-1). As pointed out before, solutions A-1
and A-4 are based on different assumptions regarding the physics of flow
and transport at or near the lower boundary. Because of some incon-
sistencies 1n the stipulation of concentration continuities at the inlet and
outlet boundaries for Brenner’s solution (van Genuchten & Parker, 1984)
and because of its numerically more tedious form compared to A-1, we
recommend that solution A-1 always be used to calculate flux-averaged
concentrations, whether they pertain to finite systems (effluent curves)
or semi-infinite field profiles. We similarly recommend that solution A-
2 always be used for volume-averaged resident concentrations.

2.0

RELATIVE HOLDUP, H/R
o

o} 4 8 12 6 20
PECLET NUMBER, P
Fig. 44-2. Relative holdup (H/R) vs. column Peclet number (P) for the four analytical
solutions of Table 44-2 (see also Fig. 44-1).
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In some cases, breakthrough curves are obtained within laboratory
columns by means of suction cups or other extraction devices. In that
case, it is difficult to reason exactly which concentration mode will be
observed. Because the soil solution 1s extracted at a fixed location in the
soil, it is unlikely that the observed concentrations are flux concentra-
tions. However, because of the transient behavior of displacement ex-
periments and the uncertainty of how exactly flow lines are disrupted by
the installation and performance of suction cups, observed concentrations
are probably not exactly those of resident concentrations either. This
problem is not only pertinent for laboratory experiments but also for in
situ field measurements.

An expression not listed in Tables 44-1 or 44-2 but frequently used
to describe displacement experiments is (Danckwerts, 1953; Rifai et al.,
1956)

[28]

c(x,t) = %erfc[ Rx — ut }

2(DRn)'/?

This equation provides a close approximation of the four analytical so-
lutions in Table 44-1 for relatively large values of P. For example, Eq.
[28] follows from solutions A-1 and A-2 by retaining only the first term
of the analytical expressions. Equation [28] can be derived also from Eq.
[11] by assuming either an infinite system (—oo<<x<Cco) or a purely
dispersive system in which molecular diffusion is neglected (Rifai et al.,
1956; Kirkham & Powers, 1972). Even though Eq. {28] is formally not
applicable to either laboratory or field experiments, its simple form and
the fact that the equation provides a close approximation of the analytical
solutions when P is large makes it an attractive tool for deriving simple
and approximate expressions for D in terms of measurable parameters.

44-3 EXPERIMENTAL PRINCIPLES
44-3.1 Special Apparatus

The apparatus for determining D and R consists of a precision con-
stant-volume pump, a soil column, and a fraction collector (Wierenga et
al., 1975) (Fig. 44-3). For unsaturated flow experiments, controlled vac-
uum is necessary, as well as a vacuum container to house the fraction
collector. Columns for holding the soil are most conveniently constructed
from plexiglass. Construction details are available from the second au-
thor.

The lower end of the plexiglass column has a bottom plate with an
O-ring closely fitted inside the column. The top part of the bottom plate
contains a fritted glass porous plate with a slightly smaller diameter. Space
below the fritted glass plate and a hole in the center of the bottom plate
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Fig. 44-3. Schematic diagram of experimental apparatus for column displacement experi-
ments.

allow for drainage from the column. To reduce mixing in the end-plate
assembly, it is important to keep the pore space of the end assembly as
small as possible. For ions that react with fritted glass, stainless steel
porous plates (Michigan Dynamics, Garden City, MI 48135) may be used.
Unfortunately, these plates generally have a lower air-entry value than
fritted glass plates. Alternatively, silver membranes (Selas Flotronics,
Huntingdon Valley, PA 19006) may be used. They should be placed on
top of the stainless steel plate or other coarse, porous material for support.
Silver membranes have a high air-entry value and a low resistance to
water flow. They are also very thin (0.5 mm) and thus contain minimal
pore-space volume. At the upper end of the vertically placed soil column,
the tracer solution can be applied through a porous plate or by means of
an assembly of hypodermic needles (Gaudet et al., 1977) that spreads the
solution evenly over the soil surface.

The column is placed above the fraction collector to collect the ef-
fluent in small-volume fractions. For unsaturated flow experiments, the
fraction collector is placed inside a vacuum container which is connected
to a vacuum supply by means of a vacuum regulator (Moore Products
Co., Spring House, PA 19477). By locating the column outlet through a
hole in the plexiglass cover of the container, a constant vacuum will be
maintained at the lower end of the column. The magnitude of the required
vacuum depends on the rate at which the solution is applied to the top
of the column, and the hydraulic properties of the soil inside the column.
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Ideally, the vacuum should be such that unit gradient flow conditions
and a uniform water content distribution with depth exist within the
column during the experiment. Constant flow conditions are best main-
tained by applying the solution with a precision constant-volume pump.
Maintaining constant flow conditions is particularly important for ex-
periments of long duration. When several columns are leached simul-
taneously, a multichannel syringe pump as described by Wierenga et al.
(1973) may be considered. Where maintaining constant-flow conditions
is less critical, or when the soil is to be maintained close 10 saturation,
burettes may be used to apply the solution to the columns (Nielsen &
Biggar, 1961). Although burettes make it more difficult to maintain con-
stant-flux conditions, they do allow for a much better control of the
pressure-head gradient inside the soil columns. With either pumps or
burettes, it is important to be able to switch rapidly from one solution
to another, with minimal mixing between the applied solutions in the
inlet assembly.

44-3.2 Experimental Procedure

Upon collecting effluent samples, determining their concentration by
standard chemical procedures, and plotting these concentrations vs. either
time, volume of effluent (V' = Agt), or pore volume (7), an effluent curve
1s obtained. The number of pore volumes is calculated by dividing the
amount of water leached through the column (V) by the liquid capacity
(V, = ABL) of the column

T=V/V,=vw/L [29]

where L is the length and A the cross-sectional area of the column. The
analysis of effluent curves is greatly facilitated by plotting relative con-
centrations (Eq. [13]) vs. pore volumes. Figure 44-4 shows typical effluent
curves for the movement of tritiated water (*H,O) through a 30-cm long
soil column and for chromium (Cré*) transport through a 5-cm long
column of sand. Relevant data for these and two other experiments are
listed in the appendix. The *H,0O-data are hypothetical insofar as they
were calculated with solution A-1 (Table 44-2), with R = | and P = 30;
the chromium data were actually measured. Both sets of data will be used
in later sections to check the accuracy of the different methods.

We emphasize here that use of the dimensionless parameters P and
7" does not suggest that the different methods below are restricted only
to finite laboratory soil columns. The parameter L in case of field-mea-
sured concentration-time curves simply refers to the soil depth at which
the concentrations were observed. Hence, the methods below apply also
to semi-infinite field profiles, provided that only methods based on so-
lution A-2 (Tables 44-1 and 44-2) be used to estimate P and R from
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Fig. 44-4. Effluent curves for tritiated water (*H,0O) and chromium (Cro™).

volume-averaged field concentration data. Once P is determined with
whatever method, the value of D follows immediately from Eq. [22b].

44-4 METHOD I: TRIAL AND ERROR
44-4.1 Principles, Procedure, and Example

Estimates for P and R can be obtained by comparing the experimental
curve directly with a series of calculated distributions and selecting those
values of P and R that provide the best fit with one of the theoretical
curves. An approximate estimate for R can be obtained first by locating
the number of pore volumes (7" = R) at which the relative concentration
of the observed curve reaches 0.5. This property is based on Eq. [28],
which at x = L and in terms of P and 7 reduces to

cdT) = V2 erfc[(P/ART)> (R — T)]. [30]

Because erfc(0) = 1, it follows from Eq. [30] that ¢(R) = 0.5. As an
example, Fig. 44-5 compares the *H,O-curve of Fig. 44-4 with theoretical
curves based on solution A-1 of Table 44-2, using R = 1 and various

values of P. Inspection of this figure shows that the correct value of P
should be about 30 to 40.

44-4.2 Comments

From Fig. 44-5, it must be clear that trial-and-error methods can be
cumbersome and time-consuming, and that they yield estimates for P
and R that are not necessarily reproducible by two different investigators
or by the same investigator on two different occasions.
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Fig. 44-5. Calculated effluent curves based on analytical solution A-1 (Table 44-2) and for
various values of the column Peclet number, P. The “observed” curve (open circles) was
obtained with R = 1 and P = 30.

44-5 METHOD II: FROM THE SLOPE OF AN EFFLUENT
CURVE

44-5.1 Principles

Consider first the approximation given by Eq. [30] for the relative
effluent concentration. Differentiation of this equation with respect to 7,
evaluating the resulting equation at 7 = R, and solving for P yields (see
also Rifai et al., 1956)

P=4r RS [31]

where Sy 1s the slope of the effluent curve after exactly R pore volumes.
The retardation factor, R, again can be estimated by locating the value
of T at which the relative concentration equals 0.5.

The method above is based on Eq. [30] and hence can give only
approximate estimates for P and R. However, a similar method can also
be derived from analytical solution A-1 of Table 44-2. Differentiation of
that solution with respect to 7 and solving for P at T = R also leads to
Eq. [31]. Contrary to Eq. [30], however, solution A-1 does not yield a
value of 0.5 after R pore volumes. This is shown in Fig. 44-6, where
relative effluent concentrations at 7 = R, i.e., ¢(R), are plotted vs. P for
the four analytical solutions of Table 44-2. Note that ¢ (R) for case A-1
is always > 0.5, especially when P is small. Once approximate values of
P and R are obtained by means of Eq. [31] and the initial assumption
that c{R) = 0.5, curve A-1 of Fig. 44-6 can be used to obtain a better
estimate for c(R). By locating that estimate on the measured curve and
reading the associated value of T, an improved estimate for R results. If
c(R) differs greatly from 0.5, it may be necessary to graphically recalculate
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Fig. 44-6. Effect of P on the relative effluent concentration after R pore volumes (7 = R)
for the four analytical solutions of Table 44-2.

the slope S7at 7= R. Once improved estimates for R and S, are avail-
able, the final value for P is obtained by again using Eq. [31].

44-5.2 Procedure

After plotting relative concentrations vs. pore volumes, c(7), deter-
mine graphically the slope S of that curve at a relative concentration of
0.5. The value of T at ¢, = 0.5 gives an initial approximation for R.
Given the initial estimates for S, and R, use Eq. [31] to obtain a first
approximation for P. Use curve A-1 of Fig. 44—6 to obtain an improved
estimate for the relative concentration after R pore volumes. Locate this
concentration on the experimental effluent curve; the value of 7 at that
point gives an improved estimate for R. If needed, graphically recalculate
the slope S at the point. Application of Eq. [31] leads to an improved
value for P.

44-5.3 Example

Using the tritiated water effluent curve as an example, it follows from
Fig. 44-7 that the slope Sy at ¢, = 0.5 equals 1/(1.29 — 0.65) = 1.56,
while R = T = (.96 at that point. Substitution of these values into Eq.
[31] yields P = 28.2. For this P-value, ¢, at T = R will be about 0.55
(curve A-1 of Fig. 44-6). The value of T at ¢, = 0.55 in Fig. 44-7 is
about 1.00, which is our improved estimate for R. Assuming that the
dimensionless slope S+ of the observed curve at a relative concentration
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Fig. 44-7. Calculation of the dispersion coefficient from the slope of the effluent curve at
T = R (Method II: see text).

of 0.55 is the same as at 0.5, application of Eq. [31] with R = 1.00 and
Sr = 1.56 leads to a final estimate of 30.6 for P. In actuality, the slope
at ¢, = 0.55 should be slightly smaller than at 0.3, thus causing P to be
somewhat overestimated. Ignoring this small effect, we conclude that P
and R are 30.6 and 1.00, respectively. Results obtained with this and the
next two methods are summarized in Table 44-3. Figure 44-8 shows
graphically the final results for both *H,O and Cré-.

44-5.4 Comments

Method II is relatively easy to apply, requires only a minimum num-
ber of calculations, and still gives fairly accurate answers. This method
is based on analytical solution A-1 of Table 44-2, and hence can be
applied only to flux-averaged concentrations (effluent curves). However,
for not too small values of P the method should give fairly accurate
answers also for observed laboratory and field in situ measurements.
Because Eq. [30] as compared to A-1 is a more accurate approximation
of solution A-2 in Table 44-2, we recommend that the initial estimates
for P and R be used directly in that case, i.e., without using the iteration
involving curve A-1 of Fig. 44-6.

44-6 METHOD III: FROM A LOG-NORMAL PLOT OF THE
EFFLUENT CURVE
44-6.1 Principles

Consider again the approximation, Eq. [30], for the relative effluent
concentration. Inverting this equation yields
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Table 44-3. Estimates for P and R based on several methods and for different

analytical solutions. For comparison, the estimates based on

Eq. {30} are also included.

Analytical solution

Exp.
no. Tracer Method A-1 A-2 A-3 A-4 Eq.[30]
1 *H,0 11 P 30.6 - - - 28.2
R 1.00 - - - 0.96
III P 30.3 29.9 29.4 29.2 30.7
R 1.000 0.975 1.036 1.000 0.975
v P 30.00 29.54 29.37 28.96 30.49
R 1.000 0.967 1.035 1.000 0.968
2 Cre 11 P 21.6 - - 19.4
R 1.34 - - - 1.28
I P 18.7 18.3 17.9 17.6 19.1
R 1.350 1.284 1.419 1.350 1.284
v P 19.65 19.19 18.95 18.59 20.11
R 1.349 1.280 1.424 1.349 1.284
3 Cl- 11 P 266.0 - - - 262.0
R 0.92 - - - 0.914
111 P 252.0 251.6 251.1 251.9 252.4
R 0.922 0.919 0.925 0.922 0.919
v P 253.6 253.1 253.1 253.0 254.1
R 0.921 0.918 0.925 0.921 0.918
4 *H,0 11 P 324 - - 30.4
R 0.97 - - - 0.940
III P 26.8 26.4 26.0 25.7 27.1
R 0.987 0.948 1.020 0.987 0.948
v P 26.76 26.31 26.10 25.72 27.26
R 0.973 0.937 1.012 0.973 0.938
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Fig. 44-8. Observed and fitted effluent curves for tritiated water and chromium (Exp. no.
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inverfe(2c,) = (P'2/2)(1 — T/R)/(T/R)"> [32]

where inverfc is the inverse complementary error function. For values
of y close to one, the following approximation is very accurate

(I = y)/y'"? ~ =In(y). [33]
Applying Eq. [33] with y = T/R to Eq. [32] yields
inverfc(2c,) = (PV%/2) In(T/R) = (P22)In(R) — In(D)]. [34]

This equation shows that P can be obtained from the slope of the curve
inverfc(2¢,) vs. In(7). Calling this slope «, we have

P=4da®— A [35]

where a correction factor A is introduced to account for the approximate
nature of Eq. [33]. Because of this approximation, the value of A depends
on the range of 7-values used in the correlation of Eq. [35], and conse-
quently also on the concentration range of that correlation. Equations
[34] and [35] can be applied also to the four analytical solutions of Table
44-2, provided the value of A is properly adjusted for each case. Table
44-4 gives approximate values of A for the four solutions and for different
concentration ranges. An alternative and more complicated expression
for P as a function of a was given earlier by Rose and Passioura (1971).
Their expression, which holds only for solution A-4 and for relative con-
centrations between 0.05 and 0.95, does not vield better results than the
much simpler Eq. [35].

Once « is derived graphically from a plot of inverfc(2¢,) vs. In(7),
the value of P is calculated with Eq. [35] using a suitable value for A
taken from Table 44-4. R again is estimated by first using Fig. 44-6 to
find ¢(R) and subsequently locating that concentration on the experi-
mental curve. The value of T associated with this point provides an
estimate for R.

Table 44-4. Values for A in Eq. [35] associated with the four analytical solutions
of Table 44-2 and for different concentration ranges.t

Analytical solution

Relative

concentration A-1 A-2 A-3 A-4 Eq.[30]

range P>4 P>4 P>9 P>4 P>2

0.20-0.80 0.5 0.9 1.3 1.6 0.07
0.10-0.90 0.6 1.0 14 1.7 0.17
0.05-0.95 0.7 1.1 1.5 1.8 0.27
0.02-0.98 0.8 1.2 1.7 1.9 0.42
0.05-0.80 0.7 1.0 - 1.6 1.8 0.2

T For comparison, values of A for approximation in Eq. [30] are also included. The
values for A are only valid for the indicated P-values.
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The method above is fairly straightforward, the main challenge being
an accurate inversion of the complementary error function. One can do
this by using available tables of the erfc-function (e.g., chapter 7 of Abra-
mowitz and Stegun, 1965), or more conveniently by making use of the
following inversion formula:

T _ 1/2 ,
inverfe( y) = 1) P _[ In(y/2)] ” (0<y<d) 36]
-flp) p=[-In(l-y/2)]"" (1< y<2)
where
1.881796 + 0.9425908 0.0546028p3
fipy=p- Al p+ p

1 + 2.356868p + 0.3087091p + 0.0937563p> + 0.0219104p*
[37]

This approximation, which we obtained by improving Eq. [26.2.23] of
Abramowitz and Stegun (1965), has an absolute error in inverfc of less
than 4.107° over the range —4 << inverfc < 4.

Because of the relation between the complementary error function
and the normal probability function, Eq. [34] also implies that a straight
line emerges when c,. is plotted vs. In(7) on probability paper. This prop-
erty obviates the need to invert erfc for each new experiment. Figure 44—
9 gives an example of the type of plot that must be prepared for this
purpose. The vertical axis at the left, to be identified with the observed
concentrations, shows the regular probability scale between 0.0001 and
0.9999. The vertical axis on the right shows equally spaced intervals for
inverfc(2c,). For easy reference, the plot also includes for selected values
of ¢, several horizontal lines exhibiting the exact values of inverfc(2c,).
The horizontal axis of the log-normal plot (Fig. 44-9) of course must be
logarithmic.

44-6.2 Procedure

Prepare a log-normal plot as shown in Fig. 44-9. If no probability
paper is available, a log-normal plot can be constructed either by using
published tables of the erfc-function, or by making use of Eq. [36] and
[37]. Once this plot is constructed, graphically calculate the slope « of
the curve inverfc(2c.) vs. In(7). Use Table 44-4 to find the value of A
applicable for a given analytical solution and a given concentration range
judged to be appropriate for the analysis. Use Eq. [35] to calculate P from
o and A. Given P, use one of the curves in Fig. 44-6 to estimate the
concentration ¢, after R pore volumes. Use this value of ¢(R) to find
In(7) = In(R), and hence R, from the experimental curve.
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Fig. 44-9. Logarithmic-normal plots of the effluent curves shown in Fig. 44-3 (Method III).

44-6.3 Example

Figure 44-9 shows the same experimental data of Fig. 44-4 plotted
vs. In(7) on probability paper. The solid lines were eye-fitted through the
data points. For the *H,O curve all data points between relative concen-
trations of 0.02 and 0.98 were used, while for Cré* only data between
0.10 and 0.90 were considered. When drawing the curves, we recommend
using more weight for observed data points close to ¢, = 0.5; this pro-
cedure avoids too much influence being given to data points involving
very low and very high concentrations (Fig. 44-9). Although deviations
from the straight-line behavior at these end points of the fitted curve are
important both from an experimental and conceptual point of view, these
deviations are visually greatly enhanced with a probability scale. The
fitted curves in Fig. 44-9 can be obtained also by applying least-squares
techniques (Rose & Passioura, 1971; Passioura et al., 1970). Unfortu-
nately, such an approach again will put too much emphasis on the extreme
low and high concentrations.

The slope « of the *H,0-curve (see Fig. 44-9) equals (—1.18/3.29)
or 2.79. Equation [35] with A = 0.8 (Case A-1 of Table 44-3) gives P =
30.3. The relative concentration after R pore volumes for this P-value is
about 0.54 (Fig. 44-6), which leads to an estimate of 0.0 for In(R). Hence
R = 1.00. Estimates of P and R for solution A-1 and the other three
analytical solutions are listed in Table 44-3.



SOLUTE DISPERSION ‘ 1047

The procedure for chromium is exactly the same. The slope « is
determined graphically from Fig. 44-6: @ ~ 2.326/1.06 = 2.194. With
A = 0.6 (Case A-1 for the concentration range 0.1 to 0.9 in Table 44--
4), this leads to P = 18.7. Since ¢, = 0.56 at T = R for this P-value
(Fig. 44-6), it follows from Fig. 44-9 that In(7) is about 0.30. This in
turn gives R = 1.35 for the chromium curve.

44-6.4 Comments

While a log-normal plot of experimental data is not expected to yield
exactly a straight line because of the approximations discussed above,
deviations of the magnitude of those shown for the chromium curve in
Fig. 44-6 cannot be explained on that basis. Several situations will lead
to these types of deviations, such as the use of undisturbed, aggregated,
or otherwise structured soils, soils containing large macropores that in-
duce preferential solute transport, channeling of water along the walls of
a poorly packed soil column during saturated flow, or fingering caused
by density differences between the displacing and displaced solution. Also
chemical effects, such as nonlinear adsorption or cation exchange in gen-
eral, can lead to serious deviations from the log-normal distribution.
Figure 44-10 shows two additional experimental curves, one for chloride
transport through a loam soil that yields a straight line and one for tri-
tiated water movement through an aggregated clay loam that quite se-
verely deviates from the straight log-normal line. Analysis of the chloride
data is straightforward, yielding P and R-values as shown in Table 44-
3. Unfortunately, some judgment is needed when analyzing the *H,O
curve. In this case, a straight line was drawn through the data points
located between relative concentrations of 0.2 and 0.8. The fitted effluent
curves for Cl and *H.O are both shown in Fig. 44-11. Note that the
observed tritiated water curve deviates considerably from the straight
log-normal plot in Fig. 44-10, but that the fitted curve in Fig. 44-11 is
still quite reasonable; serious deviations occur only at the higher con-
centrations. The fitted curve in this case was based on analytical solution
A-2 (Table 44-2). The other solutions generated essentially the same fitted
curve, albeit with slightly different values for P and R (Table 44-3).

Method III involves a few more calculations than the somewhat sim-
pler Method II, notably the cumbersome inversion of the complementary
error function. Fortunately, the number of calculations can be reduced
drastically by first preparing special logarithmic-normal paper as shown
in Fig. 44-6. Once this special paper is available, the analysis can be
carried out quickly and easily. Results obtained with Method III are
generally more accurate than those based on Method II. This is a direct
consequence of the fact that the slope S for Method II must be deter-
mined after exactly R pore volumes. Because this slope changes from
point to point on the curve, its value is not easy to pinpoint exactly and
in a reproducible manner. On the other hand, the approximately straight
log-normal plot of Method III allows a much broader concentration range
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Fig. 44-10. Logarithmic-normal plots of effluent curves for Exp. no. 3 and 4 (Table 44-3).
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Fig. 44-11. Observed and fitted effluent curves for Exp. no. 3 and 4 (Method III).

to be used when determining the slope a, which in turn will lead 1o a
more accurate estimate for . An additional advantage of Method III is
its applicability to all four analytical solutions, whereas Method I holds
only for solution A-1. A disadvantage of Method I1I is that results based
on this method can become quite inaccurate when P becomes less than
about 5 (see Table 44-4).
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44-7 METHOD IV: LEAST-SQUARES ANALYSIS OF THE
EFFLUENT CURVE

44-7.1 Principles

The trial-and-error method discussed earlier (Method 1) is based on
a series of comparisons between observed and calculated effluent curves
until a satisfactory visual fit of the observed curve is obtained. This
method can be expanded into a more formal approach by continuously
adjusting P and R until a least-squares fit of the observed data is obtained.
This is done by minimizing the residual sum of squares (R,)

R=3 [e(L.T) - (L, T)] 138)
i=1

where ¢{(L,T;) and c(L,T) are the observed and calculated data points at
pore volume T, and 7 is the number of observed data points. Several
methods for minimizing R, are available, ranging from relatively simple
graphical methods to computerized solutions using existing least-squares
inversion methods (Elprince & Day, 1977; Laudelout & Dufey, 1977; Le
Renard, 1979; van Genuchten, 1980, 1981; Parker & van Genuchten,
1984b). Table 44-3 gives for all four experiments the fitted values of P
and R as obtained with the least-squares program of van Genuchten
(1980). This program is available upon request from the senior author.

44-7.2 Comments

Results based on least-squares optimization methods are the most
accurate, are valid for all values of P and R, and are reproducible on
different occasions and by different investigators. Once programmed,
computerized least-squares methods are also by far the most convenient
ones to use. In addition, they can be extended easily to situations where
pulse-type effluent curves are present, i.e., to cases where the tracer is in
the feed solution for only a relatively short period of time. Parker and
van Genuchten (1984b) recently published a least-squares optimization
method that can be used to estimate D and R from observed breakthrough
data obtained at more than one distance from the soil surface. Clearly,
such an approach extracts the most information from available experi-
mental data.

44-8 METHOD V: FROM CONCENTRATION-DISTANCE
CURVES

In some cases dispersion coefficients must be estimated from con-
centration-distance curves. Such curves can be obtained by sectioning
laboratory soil columns or by determining solute concentration in situ,
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either in laboratory soil columns or in field soils. Two methods for these
situations are discussed briefly below. Both methods are based on Eq.
[28], and consequently, can vield only approximate estimates for D and
R. Not mentioned any more are trial-and-error and least-squares meth-
ods; application of these methods to concentration-distance curves is, at
least in principle, straightforward. For the documentation of a least-squares
optimization program applicable to concentration distributions vs. dis-
tance, see Parker and van Genuchten (1984b).

Differentiating Eq. [28] with respect to x and evaluating the resulting
expression at Rx = vt leads to the following equation for D

D = R/4xt S? [39]

where S, is the slope of the experimental curve at ¢ = 0.5, Since at this
point Rx = vz, Eq. [39] can be written also in the form

D = v/dnx, S2 [40]

where x, is the value of x where the relative concentration attains a value
of 0.5. Equations [39] and [40] are evaluated in a similar way as Eq. [31]
for Method II. Contrary to Method 1I, however, the present equations
are applicable only to Eq. [28]. Hence, they cannot be applied to any of
the analytical solutions in Table 44-1.

A procedure somewhat similar to Method III follows by inverting
Eq. [28]:

inverfc(2c) = (Rx — vr)/2(DRf)V* . [41]

This equation shows that D can be obtained also from the slope, 8, of
the curve inverfc(2¢) vs. x. The predictive equation for D in this case is

D = R/43% (R = wt/x,). [42]

44-9 OTHER TRANSPORT MODELS

The different methods described above all deal with transport Eq.
[11], a model that considers linear equilibrium adsorption but ignores
production or decay. For many organics, N species, or radionuclides,
additional terms are usually needed that describe zero- and/or first-order
production or decay processes. A general transport model for that case
is
0C _ 5 3C aC

D——v=—=—-uC+y [43]

RW dx2 dx
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where u and v are first- and zero-order rate coefficients. Because of the
production and decay terms. simple methods analogous to Methods II,
111, and V are not available for estimating D, R, g, and/or v. However,
an easy-to-use computer program that couples a least-squares optimi-
zation method with various analytical solutions of Eq. [43] recently has
been made available by Parker and van Genuchten (1984b). Their pro-
gram can be applied to observed concentration distributions vs. time
and/or distance.

Least-squares computerized methods can be conveniently used also
to estimate parameters that appear in more complicated transport models.
For example, van Genuchten (1981) published a program that is appli-
cable to various physical and chemical nonequilibrium models. His pro-
gram is limited to breakthrough curves in time. The program of Parker
and van Genuchten (1984b) considers similar nonequilibrium models
applicable to concentration-distance curves as well.

44-10 GENERAL COMMENTS

As outlined above, several methods are available for determining D
(or P) and R. The two simplest methods (I and II) are probably most
appropriate when the effluent curve is poorly defined. This may be due
to a limited number of (inaccurate) data, considerable scatter between
the data points, or serious deviations from the mostly sigmoidal-type
curves shown in this study. Methods based on least-squares techniques
or on log-normal plots of the data are best reserved for cases where the
experimental curve is well-defined. Of all existing methods, least-squares
computer methods are the most accurate and at the same time the most
convenient ones to use. Provided that the necessary computer facilities
are available, we strongly recommend their use.

As was pointed out already in section 44-2, we emphasize again that
the fitted values of D and R ultimately are associated with one of the
analytical solutions in Table 44-1. Methods based on different analytical
solutions but applied to the same experimental data will lead to different
values for D and R. These differences can become especially noticeable
for relatively small values of the dimensionless group (vx/D), or in the
case of effluent curves of the column Peclet number, P. Figure 44-1
suggests that for P-values greater than about 20, the fitted value of the
dispersion coefficient becomes more or less independent of the method
used to determine that value. In practice, this means that experiments
should be carried out on columns of at least 10 to 15 cm length in case
of homogeneous soils with relatively narrow pore-size distributions, and
on columns of at least 30 to 50 cm length if undisturbed, aggregated, or
other soils are present that have a relatively broad pore-size distribution.
If column experiments are used primarily to determine the retardation
factor, R (or the linearized distribution coefficient, k), then a shorter
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column is allowed, provided that only methods based on analytical so-
lutions A-1 or A-4 of Table 44-2 are used.

44-11 APPENDIX

Data for four column displacement experiments.

Example 1 2 3 4
Tracer: *H,0 Cr® Cl- *H,0
f (cm® em™?) 0.400 0.184 0.363 0.453
o(gem™3) 1.400 1.68 1.53 1.22
q (cmday™) 10.0 3.61 5.16 17.0
L (cm) 30.0 5.0 30.0 30.0

T C, T C, T Co T C,o

0.50  0.0042 0.558 0.000 0.749 0.004 0.512 0.001
0.60 0.0294 0.695 0.006 0.768 0.017 0.556  0.006
070 0.1015 0.831 0.061 0.787 0.035 0.599 0.016
0.75 0.1586 0.967 0.198 0.806 0.059 0.643  0.045
0.80  0.2279 1.103 0.325 0.825 0.114 0.686 0.082
0.85 0.3057 1.236 0.450 0.845 0.169 0.730 0.138
0.90  0.3881 1.375 0.592 0.864 0.240 0.774 0.218
0.95 04709 1511 0705 0.883 0.326 0.817 0.296
.00 0.5507 1.647 0.768 0.902 0.421 0.861 0.376
1.05 06247 1.783 0841 0911 0467 0.904 0.465
L1060  0.6913 1919 0.881 0921 0.531 0.948 0.529
116 07497 2,055 0.944 0930 0.562 0.992 0.593
120 0.7996 2.191 0.966 0940 0594 1.035 0.655
125 0.8414 2327 0994 0949 0709 1.079 0.685
1.35  0.9037 2463 0999 0.959 0688 1.192 0.745

1.45  0.9436 0.968 0712 1.166 0.764
1.55  0.9679 0.978 0.767 1.218 0.806
1.65 0.9822 0.987 0.806 1.284 0.834
1.80  0.9929 0.997 0.822 1.340 0.850
1.95 0.9973 1.006  0.838 1.384 0.866

1.016 0.814 1.428 0.901
1.025 0.893 1501 0.905
1.035 0.900 1.558 0.915
1.044 0924 1.646 0.923
1.054 0.935 1.689 0.928
1.063  0.940 1.754 0.947
1.073  0.963 1.848 0.953
1.082  0.999 1.935 0.953
1.092  0.993 2.022 0.968

2.110  0.974
2.196 0.979
2.283  0.981
2392 0.986
2.517  0.987
2.608 0.993
2.824  0.994
3.040  0.995
3.257  0.996

3.473  0.998
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